Morphology, Composition, and Mixing State of Individual Aerosol Particles in Northeast China during Wintertime
نویسندگان
چکیده
Northeast China is located in a high latitude area of the world and undergoes a cold season that lasts six months each year. Recently, regional haze episodes with high concentrations of fine particles (PM2.5) have frequently been occurring in Northeast China during the heating period, but little information has been available. Aerosol particles were collected in winter at a site in a suburban county town (T1) and a site in a background rural area (T2). Morphology, size, elemental composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM). Aerosol particles were mainly composed of organic matter (OM) and S-rich and certain amounts of soot and K-rich. OM represented the most abundant particles, accounting for 60.7% and 53.5% at the T1 and T2 sites, respectively. Abundant spherical OM particles were likely emitted directly from coal-burning stoves. Soot decreased from 16.9% at the T1 site to 4.6% at the T2 site and sulfate particles decrease from 35.9% at the T2 site to 15.7% at the T1 site, suggesting that long-range transport air masses experienced more aging processes and produced more secondary particles. Based on our investigations, we proposed that emissions from coal-burning stoves in most rural areas of the west part of Northeast China can induce regional haze episodes.
منابع مشابه
Single-Particle Characterizations of Ambient Aerosols during a Wintertime Pollution Episode in Nanning: Local Emissions vs. Regional Transport
Ambient aerosol during a heavily polluted episode in wintertime was characterized using real-time single particle aerosol mass spectrometry (SPAMS) in urban Nanning, a capital city in the Southwestern China. More than two million individual particles analyzed by SPAMS were classified into 8 major clusters based on the mass spectral patterns. A group of vanadium-rich particles were identified as...
متن کاملMorphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai
A total of 834 individual aerosol particles were collected during October and November 2010 in urban Shanghai, China. Particles were sampled under different weather and air quality conditions. Morphologies, compositions and mixing states of carbonaceous aerosols were investigated by transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX). Structures of some particles w...
متن کاملImportance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory inves...
متن کاملSimulating the evolution of soot mixing state with a particle-resolved aerosol model
The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition ...
متن کاملCharacterization of ambient aerosol from measurements of cloud condensation nuclei during the 2003 Atmospheric Radiation Measurement Aerosol Intensive Observational Period at the Southern Great Plains site in Oklahoma
[1] Measurements were made by a new cloud condensation nuclei (CCN) instrument (CCNC3) during the Atmospheric Radiation Measurement (ARM) Program’s Aerosol Intensive Observational Period (IOP) in May 2003 in Lamont, Oklahoma. An inverse aerosol/CCN closure study is undertaken, in which the predicted number concentration of particles available for activation (NP) at the CCNC3 operating supersatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017